Course Code	Course Name	Credits
MEDLO5011	Optimization Techniques	03

Objectives:

- 1. To Understand the need and origin of the optimization methods.
- 2. To understand various linear, nonlinear and other optimization techniques.
- 3. To understand various multi criterion and multi-objective decision making methods.
- 4. To understand recent tools in optimization

Outcomes: Learner will be able to...

- 1. Identify the types of optimization problems and apply the calculus method to single variable problems.
- 2. Formulate the problem as Linear Programming problem and analyse the sensitivity of a decision variable.
- 3. Apply various linear and non-linear techniques for problem solving in various domain.
- 4. Apply multi-objective decision making methods for problem in manufacturing environment and other domain.
- 5. Apply multi criterion decision making methods for problem in manufacturing environment and other domain.
- 6. Apply Design of Experiments method for Optimization

Module	Details	Hours
1	Basic Concepts: Statement of the Optimization Problem, Basic Definitions, Optimality Criteria for Unconstrained Optimization, Optimality Criteria for Constrained Optimization, Engineering Application of Optimization, Classification of Optimization Problems. Classical Optimization Techniques: Single variable optimization	06
2	Linear Programming Problem: Formulation, Simplex method, Big M Method, Two Phase, Primal to Dual, Dual Simplex method, Sensitivity Analysis and applications of LP Transportation and Assignment Models.	
3	Integer Programming Model: Gomory's cutting plane method, Branch & Bound Technique. Non L.P. Model: Lagrangian method & Kuhn tucker Method, Newton's method. Discrete Event Simulation: Generation of Random Variable, Simulation Processes, Monte-Carlo Technique.	08

4	Multi Objective Decision making (MODM) Methods: Introduction to Multi objective optimization, Traditional Techniques such as, quadratic programming, geometric programming, Numerical on goal programming and dynamic programming. Introduction to Non-traditional optimization Techniques such as Genetic Algorithm, particle swarm, genetic algorithms, simulated annealing and Techniques based on Neural network & Fuzziness (Only concepts)	08
5	Multi Criterion Decision-making (MCDM) Methods: Introduction to multi criterion optimization Simple Additive Weighting (SAW) Method Weighted Product Method (WPM) Analytic Network Process (ANP) Analytic Hierarchy Process (AHP) Method TOPSIS Method PROMETHEE	06
6	Robust Design Methods: DOE and Taguchi techniques Full Factorial Design: The basics of "full factorials", ANOVA, Factorial effects and plots, and Model evaluation Fractional Factorial Design: The one-half fraction and one-quarter of the 2^k design, The general 2^{k-p} fractional factorial design Application of related software (Minitab, Design Expert or MATLAB)	08

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

Text/Reference Books:

- 1. S.S. Rao, "Engineering Optimization Theory and Practice", John Wiley and Sons Inc.
- 2. Ranjan Ganguli, "Engineering Optimization A Modern Approach" Universities Press
- 3. Pablo Pedregal, "Introduction to Optimization", Springer
- 4. L.C. Jhamb, "Quantitative Techniques Vol. 1 and 2", Everest Pub. House
- 5. Pierre D.A., "Optimization, Theory with Application", John Wiley & sons.
- 6. R V Rao, "Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making" (Springer Publication).

- 7. Ritter, H., Martinetz, T., &Schulten, K., Addison, "Neural Computation and Self-Organizing Maps"-Wesley Publishing Company
- 8. Douglas C.Montgomery, "Design and analysis of experiments" (John Wiley & Sons Inc.)
- 9. Saravanan R,"Manufacturing Optimization through Intelligent Techniques", Taylor & Francis (CRC Press)-2006.

Links for online NPTEL/SWAYAM courses:

https://nptel.ac.in/courses/112/101/112101298/ - Optimization from Fundamentals, IIT Bombay