Course Code	Course Name	Credits
MEL503	Finite Element Analysis	01

Objectives:

- 1. To familiarise FEA concept for practical implementation
- 2. To acquaint with FEA application software

Outcomes: Learner will be able to...

- 1. Select appropriate element for given problem
- 2. Select suitable meshing and perform convergence test
- 3. Select appropriate solver for given problem
- 4. Interpret the result
- 5. Apply basic aspects of FEA to solve engineering problems
- 6. Validate FEA solution

Term Work: (Comprises a and b)

a. List of Experiments: Students should use the commercial software or open source application programs, to verify the results obtained by manual calculations. The input data and output results of the problem solved using the computer programs (Minimum 6) should be included in the Journal.

The proposed list is given below:

- 1. Any two problems using bar element
- 2. Any two problems using truss element
- 3. Any two problems using CST element
- 4. Any two problem using axisymmetric element
- 5. Any one problem of free vibration analysis using bar element
- 6. Any one problem on steady state heat conduction
- 7. Any one problem for analysis of Beams.

While performing the analysis the students should understand the concepts of selection of element type, meshing and convergence of solution.(using approach of refining mesh and or order of the element)

b. Course Project: (Any one task out of the following proposed list)

A group of not more than four students, shall do

- 1) Finite Element Analysis of any mechanical engineering element /system, which involves element selection, assigning properties, meshing, assigning loads, and boundary conditions, analysis and result interpretation.
- 2) Develop the program to verify the results obtained by manual calculations for simple 1D/2D problems using Python, MATLAB programming platform etc.
- 3) Simulate a problem and validate the results with experimental results (the test rigs from Strength of material /Heat transfer/Dynamics of machine/fluid lab etc may be used for obtaining the experimental results)

The distribution of marks for term work shall be as follows:

Part a:10 marks. Part b:10 marks. Attendance: 05 Marks.

End Semester Practical/Oral examination

- 1. Pair of Internal and External Examiner should conduct practical/viva based on contents
- 2. Duration of practical examination is 2 hour
- 3. Distribution of marks for practical/viva examination shall be as follows:
- a. Practical performance15 marks
- b. Oral..... 10 marks

Evaluation of practical examination to be done based on the experiment performed and the output of the experiments during practical examination.

Students work along with evaluation report to be preserved till the next examination.

Text/Reference Books:

- 1. Programming the Finite Element Method, I M Smith, D V Griffiths and Margetts WILEY Publications.
- 2. The Finite Element Method: Theory, Implementation, and Applications, Larson, Mats G., Bengzon, Fredrik, Springer
- 3. Introduction to Finite Element Analysis and Design by N. H. Kim, B. V. Sankar, and A. V. Kumar by Wiley publication
- 4. Finite Element analysis using ANSYS by PaletiSrinivas,Krishna Chaitanya, Rajesh Kumar Detti, PHI Publication.
- 5. Finite Element Analysis Theory and Application With ANSYS by Saeed Moaveni, Pearson Publication.
- 6. Introduction to Finite Element Analysis Using MATLAB and Abaqus By Amar Khennane, CRC Press publication