Course Code	Course Name	Credits
MESBL601	Measurements and Automation	02

Objectives:

- 1. To study fundamentals of inspection methods and systems.
- 2. To study working of mechanical measurement system.
- 3. To familiarise with different types of control systems.
- 4. To study different hydraulic and pneumatic systems.
- 5. To study various design principles of robotics through kinematic analysis, workspace analysis and trajectory planning.

Outcomes: Learner will be able to...

- 1. Apply inspection gauge to check or measure surface parameters.
- 2. Measure surface parameters using precision measurement tools and equipment.
- 3. Measure different mechanical parameters by using sensors.
- 4. Analyse the response of a control systems.
- 5. Demonstrate use of automated controls using pneumatic and hydraulic systems.
- 6. Implement program on PLC system and demonstrate its application

The laboratory experiments should be based on the following:

Group A (Metrology):

- 1. Experiments on linear and angular measurement using Vernier calliper, micrometer and Bevel protractor.
- 2. Experiments on surface measurement by using Surface roughness tester.
- 3. Experiments on measurement of gear parameters using Gear tooth Vernier calliper / Parkinson gear tester.
- 4. Experiments on screw thread measurement using screw thread micrometer, Floating carriage micrometer / bench micrometer.
- 5. Experiments on linear / angular measurements of screw / gear /single point tool using Optical profile projector or Tool maker's microscope.
- 6. Experiment using Mechanical / Pneumatic type Comparator.
- 7. Experiments on flatness measurement by Autocollimator / Interferometry method

Group B (Mechanical Measurement):

- 1. Experiments on measurement of displacement by sensors like LVDT, Potentiometers etc.
- 2. Experiments on measurement of pressure by gauges or sensors like vacuum Gauges, pressure gauge, piezoelectric sensors, strain gauge sensors etc.
- 3. Experiments on measurement of vibration by accelerometers or NI.
- 4. Experiments on feedback control systems and servomechanisms
- 5. Experiment on frequency response system identification / transient state response of a control system.
- 6. Experiment on design of PID controller for a system or simulate and tune a PID controller using lab view.

Group C (Automation):

- 1. Experiment on trainer kit (Any one)
- a) Designing sequential operation for two cylinders using electro-hydraulic circuits.

or

- b) Designing sequential operation for two cylinders using electro- pneumatic circuits.
- 2. Experiment on simulation using software like Festo, AutoSim etc.
- a) Simulation of basic pneumatic and electro-pneumatic circuits.

or

- b) Simulation of hydraulic and electro-hydraulic circuits.
- 3. Experiments on Ladder programming
- a) Experiments on Ladder programming on PLC for simple ON OFF control, timers, counter, two motor system, simple control applications with logic/ timers/counters.

or

- b) Experiments on Ladder programming for Mechatronics system (e.g. bottle filling plant, control of electro-pneumatic or electro-hydraulic systems).
- 4. Experiments on Robotics
- a) Demonstration and study of functions of components of robotics arm.

or

b) Visualization of DH (Denavit–Hartenberg) parameters in Roboanalyzer (*Roboanalyzer is free software developed by IIT Delhi, available on www.roboanalyzer.com).

Term Work

Term work shall consist of minimum Nine Experiments. Three from each group mentioned above. There will be no theoretical assignment for the lab course. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 20 marks

Attendance: : 05 marks

End Semester Practical/Oral Examination:

- 1. Pair of Internal and External Examiner should conduct practical and viva based on contents.
- 2. Practical examination (in a group of not more than 4 students) duration is 2 hours
- 3. Distribution of marks for practical/viva examination shall be as follows:

Practical performance: 15 marks

Oral: 10 marks

- 4. Evaluation of practical examination to be done based on the experiment performed and the output of the experiment during practical examination.
- 5. Students work along with evaluation report to be preserved till the next examination.

Virtual Labs

http://ial-coep.vlabs.ac.in/ - Industrial Automation Laboratory, COEP