Course Code	Course Name	Credits
MEC404	CAD/CAM	03

Objectives:

- 1. To familiarize with basic concepts of computer graphics.
- 2. To acquaint with the process of using biomedical data for 3D modeling.
- **3.** To study programming aspects of subtractive manufacturing process.
- **4.** To familiarize with basic process of additive manufacturing in particularly 3D printing.

Outcomes: Learner will be able to...

- 1. Identify suitable computer graphics techniques for 3D modeling.
- 2. Transform, manipulate objects & store and manage data.
- 3. Develop 3D model using various types of available biomedical data.
- 4. Create the CAM Toolpath for specific given operations.
- 5. Build and create data for 3D printing of any given object using rapid prototyping and tooling processes.
- 6. Illustrate understanding of various cost effective alternatives for manufacturing products.

Module	Details	Hrs.
1.	 Computer Graphics 1.1 Introduction: Scope of CAD/CAM in product life cycle, CAD/CAM hardware and software, 2D and 3D computer graphics representation, Mapping of Geometric Models. 1.2 Parametric representation of curves and surfaces: Synthetic Curves - Bezier curves, Hermite Curves, B-spline curves. Surface representation. 1.3 Solid Modeling: Constructive solid geometry (CSG), Boundary Representation (B-Rep), Wire Frame Modeling, Solid Modeling, Surface Modeling, Parametric Modeling, Feature based modeling, Constraint Based Modeling. 	07
2.	 Geometric Transformation 2.1 Homogeneous Coordinate system, Matrix representation, Concatenations, 2D and 3D geometric transformation (Translation, Reflection, Scaling, Rotation) 	07
3.	 Modeling based on Biomedical data 3.1 Introduction to medical imaging: Computed tomography (CT), Cone beam CT (CBCT), Magnetic resonance (MR), Noncontact surface scanning, Medical scan data, Point cloud data 3.2 Working with medical scan data: Pixel data operations, Using CT data: a worked example, Point cloud data operations, Two-dimensional formats, Pseudo 3D formats, True 3D formats, File management and exchange 	06
4.	 Subtractive Manufacturing 4.1 Introduction: NC/CNC/DNC machines, Machining Centers, Coordinate system 4.2 CNC machining practices and programming: setup, and operation of two- and three- axis CNC machines programming using manual part programming method, Canned Cycles. 	07

5.	 Additive Manufacturing 5.1 Rapid Prototyping: Introduction, Classification of RP Processes, Advantages & disadvantages. RP Applications; in Design, Concept Models, Form & fit checking, Functional testing, CAD data verification, Rapid Tooling, and bio fabrication. 5.2 Working Principle, Application, Advantages & disadvantages: of Stereolithography Apparatus (SLA) Selective Laser Sintering (SLS), 3D Printing, Fused Deposition Modeling (FDM), and Laminated Object Manufacturing (LOM) 	07
6.	Virtual Manufacturing 6.1 Virtual Manufacturing: Introduction, Scope, Socio-economic Aspects and Future	05
	Trends	

Assessment:

Internal Assessment for 20 marks: Consisting Two Compulsory Class Tests First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I). Duration of each test shall be one hour.

End Semester Examination: Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References:

- 1. CAD/ CAM, Theory & Practice, Ibrahim Zeid, R. Sivasubramanian, Tata McGraw Hill Publications
- 2. CAD/CAM Principles and Applications, P. N. Rao, Tata McGraw Hill Publications
- 3. CAD/CAM Computer Aided and Manufacturing, Mikell P. Groover and Emory W. Zimmers, Jr., Eastern Economy Edition
- 4. CNC Technology and Programming, Krar, S., and Gill, A., McGraw Hill Publishers.
- 5. Medical Modelling The Application of Advanced Design and Rapid Prototyping Techniques in Medicine, Richard Bibb, Dominic Eggbeer and Abby Paterson, Woodhead Publishing Series in Biomaterials: Number 91, Elsevier Ltd.
- 6. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, I. Gibson l D. W. Rosen l B. Stucker, Springer Publication.
- 7. Rapid Prototyping and Manufacturing, P. F. Jacobs, Society of Manufacturing Engineers
- 8. Advanced Machining and Manufacturing Processes, Kaushik Kumar DivyaZindani, J. Paulo Davim, Springer International Publishing

Links for online NPTEL/SWAYAM courses:

- 1. https://nptel.ac.in/courses/112/102/112102101/
- 2. https://nptel.ac.in/courses/106/102/106102065/
- 3. https://nptel.ac.in/courses/106/102/106102065/
- 4. https://nptel.ac.in/courses/112/102/112102103/
- 5. <u>https://nptel.ac.in/courses/112/105/112105211/</u>
- 6. <u>https://nptel.ac.in/courses/112/104/112104265/</u>
- 7. https://www.youtube.com/watch?v=2cCMty9v3Tg
- 8. https://www.youtube.com/watch?v=2zPh26Q1BT8

University of Mumbai