Course Code	Course Name	Credits
MEC301	Engineering Mathematics-III	$\mathbf{4}$

Pre-requisite: Engineering Mathematics-I, Engineering Mathematics-II,

Objectives: The course is aimed

1. To familiarize with the Laplace Transform, Inverse Laplace Transform of various functions, its applications.
2. To acquaint with the concept of Fourier Series, its complex form and enhance the problem solving skills
3. To familiarize with the concept of complex variables, C-R equations with applications.
4. To study the application of the knowledge of matrices and numerical methods in complex engineering problems.

Outcomes: On successful completion of course learner/student will be able to:

1. Apply the concept of Laplace transform to solve the real integrals in engineering problems.
2. Apply the concept of inverse Laplace transform of various functions in engineering problems.
3. Expand the periodic function by using Fourier series for real life problems and complex engineering problems.
4. Find orthogonal trajectories and analytic function by using basic concepts of complex variable theory.
5. Apply Matrix algebra to solve the engineering problems.
6. Solve Partial differential equations by applying numerical solution and analytical methods for one dimensional heat and wave equations

Module	Detailed Contents	Hrs.
01	Module: Laplace Transform 1.1 Definition of Laplace transform, Condition of Existence of Laplace transform, 1.2 Laplace Transform (L) of Standard Functions like $e^{a t}, \sin (a t), \cos (a t)$, $\sinh (a t), \cosh (a t)$ and t^{n}, where $n \geq 0$. 1.3 Properties of Laplace Transform: Linearity, First Shifting theorem, Second Shifting Theorem, change of scale Property, multiplication by t, Division by t, Laplace Transform of derivatives and integrals (Properties without proof). 1.4 Evaluation of integrals by using Laplace Transformation. Self-learning topics: Heaviside's Unit Step function, Laplace Transform. of Periodic functions, Dirac Delta Function.	07
02	Module: Inverse Laplace Transform 2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace transform using derivative 2.2 Partial fractions method \& first shift property to find inverse Laplace transform. 2.3 Inverse Laplace transform using Convolution theorem (without proof) Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.	06

03	Module: Fourier Series: 3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof) 3.2 Fourier series of periodic function with period 2π and $2 l$, 3.3 Fourier series of even and odd functions 3.4 Half range Sine and Cosine Series. Self-learning Topics: Complex form of Fourier Series, orthogonal and orthonormal set of functions, Fourier Transform.	07
04	Module: Complex Variables: 4.1 Function $f(z)$ of complex variable, limit, continuity and differentiability of $f(z)$, Analytic function, necessary and sufficient conditions for $f(\mathrm{z})$ to be analytic (without proof), 4.2 Cauchy-Riemann equations in cartesian coordinates (without proof) 4.3 Milne-Thomson method to determine analytic function $f(\mathrm{z})$ when real part (u) or Imaginary part (v) or its combination ($u+v$ or $u-v$) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations	07
05	Module: Matrices: 5.1 Characteristic equation, Eigen values and Eigen vectors, Properties of Eigen values and Eigen vectors. (No theorems/ proof) 5.2 Cayley-Hamilton theorem (without proof): Application to find the inverse of the given square matrix and to determine the given higher degree polynomial matrix. 5.3 Functions of square matrix 5.4 Similarity of matrices, Diagonalization of matrices Self-learning Topics: Verification of Cayley Hamilton theorem, Minimal polynomial and Derogatory matrix \& Quadratic Forms (Congruent transformation \& Orthogonal Reduction)	06
06	Module: Numerical methods for PDE 6.1 Introduction of Partial Differential equations, method of separation of variables, Vibrations of string, Analytical method for one dimensional heat and wave equations. (only problems) 6.2 Crank Nicholson method 6.3 Bender Schmidt method Self-learning Topics: Analytical methods of solving two and three dimensional problems.	06

Term Work:

General Instructions:

1. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
2. A group of $4-6$ students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering Mathematics. This project should be graded for 10 marks depending on the performance of the students.
The distribution of Term Work marks will be as follows -

1.	Attendance (Theory and Tutorial)	05 marks
2.	Class Tutorials on entire syllabus	10 marks
3.	Mini project	10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

1. Question paper will comprise of total 06 questions, each carrying 20 marks.
2. Total 04 questions need to be solved.
3. Question No: 01 will be compulsory and based on entire syllabus wherein 4 sub-questions of 5 marks each will be asked.
4. Remaining questions will be randomly selected from all the modules.
5. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

References:

1. Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Limited,
3. Advanced Engineering Mathematics, R. K. Jain and S.R.K. Iyengar, Narosa publication
4. Advanced Engineering Mathematics, H.K. Das, S. Chand Publication
5. Higher Engineering Mathematics B.V. Ramana, McGraw Hill Education
6. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education,
7. Text book of Matrices, Shanti Narayan and P K Mittal, S. Chand Publication
8. Laplace transforms, Murray R. Spiegel, Schaum's Outline Series

Links for online NPTEL/SWAYAM courses:

1. https://nptel.ac.in/courses/111/104/111104085/
2. https://nptel.ac.in/courses/111/106/111106139/
